Monday, August 30, 2010


I have coined a new term: cigol.
The term may have some meaning, google gives it as a surname for many.
But for me it is something, which I am suffering due to.
To guess the meaning read the term backwards.

And you will get it!

Now there is a term illogical which is already existent, but when I mean cigol, it is
not exactly illogical. There is a differnece. The difference is that
illogical would mean devoid of logic. But in case of cigol, the logic is
very much there, but is reversed. They are very much applicable to babus.
For example if something is supposed to help you, they make it in such a way
that it becomes unhelpful, deliberately.

I would love to cite a lot of examples, but alas I cannot for reasons known to all.

Thursday, August 26, 2010

Some thing from this book needs no title...

 I love the artist or scholar whose activity is like the bee
pursuing the delicious nectar of the flowers. The bee has no
mind to become a renowned authority on which flowers
contain the best nectar; the bee simply loves nectar. In all
probability, the bee, through his actual experience will soon
have a fantastic knowledge of the flower geography of his
neighborhood-as good perhaps as any human scholar who
"studies" botany. And I say the bee really knows the flower
much better than the botanist. The botanist merely knows
about the flower; the bee knows the flower directly. The more
analytically minded reader might well ask, at this point, just
what I mean by "knowing about something" versus "knowing it
directly." I wish I could answer him! The distinction is so
difficult to explain rationally, and yet it is of such vital

Tuesday, August 24, 2010

Humans as Fermions

Humans as Fermions

* The Fermions

  Fermions are one set of fundamental particles and the other one are
  bosons. The distinguishing factor between bosons and fermions is
  that the fermions have half integral spins, whereas the boson have
  integral spins. Their names suggest that the bosons were discovered
  by S N Bose, an Indian physicist and fermions by E Fermi. Now
  another this is that the fermions follow what is known as the Pauli
  exclusion principle. That is to say you cannot have two fermions
  which have all the quantum numbers same.

The Pauli exclusion principle is a quantum mechanical principle formulated by the Austrian physicist Wolfgang Pauli in 1925. In its simplest form for electrons in a single atom, it states that no two electrons can have the same four quantum numbers; that is, if n, l, and ml are the same, ms must be different such that the electrons have opposite spins. More generally, no two identical fermions (particles with half-integer spin) may occupy the same quantum state simultaneously. A more rigorous statement of this principle is that for two identical fermions, the total wave function is anti-symmetric.

And electrons are fermions It is this principle which decides the electronic
  configuration in atoms. The filling up principle or the aufbau
  principle works according to the exclusion principle. So when near
  to each other the electrons will tend to have different quantum
  numbers. If all the quantum numbers are same for a given pair of
  electrons, then they must have the spins opposite. But now if a
  third electron is to be arranged in the same orbit, it simple cannot
  be accommodate; it has to go in a different orbit. So that the
  electrons behave, as if they do not like the proximity of each

* Local trains
  Now when observing humans when they are in a crowded environment
  like a local train in Mumbai, I feel that the humans do behave
  exactly like fermions. That is to say that they do not like the
  proximity of each other, just like the electron do not like
  proximity of each other in the electronic orbits. I have observed
  this many a times in the local trains. Usually the trains are very
  crowded. Even to get a position to stand comfortably is a privilege,
  especially in the peak hours.

  When you board the train at the starting station like the VT, then
  what follows is closely analogous to filling up of the electronic
  orbitals in the atom. The seats that are usually taken first are the
  window seats. In the atom it would correspond to the first filling
  of the principal quantum number. In the window seats also the
  preference is to the seats for the windows which face the incoming
  air, that is facing towards the direction of travel.

  Then the seats are filled in the order of least occupancy. People
  want to sit at the seats which are least occupied. Normally the
  seats can take 3 people, and 4 with a bit of difficulty. But the
  norm is that 4 people are seated on a single seat. Once all the seats
  are filled up to 4 occupants, then people tend to stand in between
  the seats. The analogy does not extend to the people who are
  standing at the doors, there it is more like an ensemble of free
  particles, which are jumping in and out of the compartments.

  So coming back to the seating arrangements what I have observed is
  that once the seats are filled with 4 occupants. That is the maximum
  that our 'seat' orbital can take. The rest are occupied in between
  states. They are like virtual states, ready to jump into the empty
  seats as soon as one gets empty.

* The Law of 3 
  Lets assume that the people standing in between are like the
  electron sea in metals. Now lets assume a situation in which there
  are a few people who are standing in between seats and all the seats
  are seated by 4 people. Now lets see what happens when one of the
  person who is sitting stands up to get off the train. As soon as the
  seat gets empty, one of the persons who is standing goes to fill in
  the empty seat. As more and more people get off, the people who are
  standing take up their seats. Finally we reach a state when there
  are no more people who left are standing. Now all the seats have
  four seated occupants. Now if a single person gets up. There is one
  seat with just three people, but people don't tend to move to that
  seat. It just not worth the effort, by going from a 4 seated seat
  again to a 4 seated seat, you don't gain much. So you remain seated
  where ever you are. But if you are one of the people who are seated
  on the seat where the person just left from, you surely feel
  Now let us try to visualize the situation if 2 people from a single
  seat leave off. Two people leaving from 2 different seats will not
  help. It has to be 2 people who were seated on the same seat. After
  this what we have is that, there is a seat where only 2 people are
  seated and rest of the seats have 4 people seating on them. As soon
  as this happens, a person from a 4 seater, will try to get to the 2
  seater seat. This results in two 3 seater seats, whereas the rest
  are 4 seaters. Even more if 3 people from the same seat go away, the
  resulting changing of seats by people results in maximizing the
  number of 3 seater seats. This is the law of behavior of people in a
  local train ;). I call it the Law of 3. This just also touches on
  the idea of what is called in psychology as personal space. We
  are comfortable only within a certain distance from each other. And
  make it a point to bring this into existence we make the movements.

  Well this is just a vague analogy, to the actual behavior of the
  fermions is much more involved, but nonetheless the analogy is worth

Tuesday, August 17, 2010

A Mass charger for OLPC!

  I am currently working on deploying OLPCs [One Laptop Per Child] a.k.a.
  the $ 100 laptop a.k.a. XO in India. The Green colored laptop looks
  pretty with children being very happy to have one, and what is best
  is that the children or their parents do not pay for it, but the
  child gets to keep it, take it home and play with it!

More information at,

2 Khairat

  The first pilot was started in Khairat, sleepy tribal village about
  60 kms from Mumbai. This will be the third year in Khairat. So a
  generation of children are present who have been using the XO
  consistently. Though we got on to this project last year, the Sugar
  platform I already knew about. The parents tell us that the children
  have developed special affinity with their laptops, at times even
  not allowing their elder siblings to even touch it. Pedagogically
  the support at Khairat has not been so good. The teacher their
  Mr. Surve learned most of the activities with the Sugar on his
  own. Along with the new and some upgraded activities, but thats
  another story.

3 Charging Problems

  One of the consistent problems that was faced in Khairat is how do
  you charge the laptops. Though these laptops consume quite a less
  amount of power as compared to normal ones, the fact remains that
  they run on the battery and batteries tend to dicharged when
  used. There was some solution provided in terms of a rotating wheel,
  wherein a dynamo is used to charge the XOs. But this did not work
  out well. The Khairat school is not very large about 23 students
  across all the 4 grades of the primary. So to charge all the laptops
  at the school, we needed to have 23 plug points, to put the cute
  little green chargers in! If you scale it up, if you have to have lets say 100
  deployments then, 100 plug points! The OLPC design team came up with
  a charger which can charge upto 5 laptops, but then we need to
  import that too, with the XOs. What we wanted is to charge a large
  number of XO's at one go. The desiderata was that technology should
  be indegenious, cheap, and should be `open'. Open is used here in
  the sense of being transparent to anyone who wants to repair or know
  its workings. Also the problems of the charging at Khairat were
  compounded by the fact that many of the chargers had gone bad. The
  things were so bad that for the entire class of 23 students they had
  only 5 working  chargers, so that the students could not charge the
  laptops, the scheme that was implemented in this case is that the
  children would bring the laptops to the school, charge it there turn
  by turn. All this was further complicated the `load-shedding' of the
  Electricity Board. The schedule of the electricity board is such
  that it does not allow for continuous charging.

  The first option that we tried was to get a similar charger from
  Lamington Road. When we enquired we got one for about 200
  rupees. But even if we get 20 of those, we did not have enough plug
  points in the school. And even if they were there, the lenght of the
  wire on the chargers isn't much, so the students have to sit close
  to the extensions. This isn't by all means a very good idea, AC 230
  V all near kids, in primary. Many of the chargers had bare wires,
  and accidents can always happen. But this still doesn't solve our
  problem of mass charging. We needed a charging station. Since we did
  not have one, we had to design one.

3.1 So what was to be done?

  We tried to take a supply from a
  We found that the rating on the chargers required them to charged
  with above 6 V. What could give us a continuous supply of regulated
  power and was cheap?

4 The Solution

Jude had an excellent idea. We use the standard SMPS [Switched Mode
Power Supply] which powers the regular desktops to charge the XOs. The
main purpose of the SMPS is to provide a regulated DC supply from the
AC mains, to which it is connected. The standard SMPS comes with two
levels of DC voltage as the output; one is 5 V and the other is 12
V. To operate a computer and its various parts both are needed. The 12
V supply is given to parts like the motors which operate inside the
HDDs. Whereas the 5 V supply acts like the logic 1, 0 V being
logic 0 for the binary operations to be performed on the digital
devices, that is the transistors. The current capacity of the SMPS is
about Amps. This is more than sufficient to safely charge about 10
XOs. So from one SMPS we can safely charge 10 XOs.

4.1 Now, how exactly it was to be done?

So what we did was to get the SMPS about Rs. 440 at Lamington
Road. Derive a power cable from one of the many outputs given
there. Then from that one output we would need to draw 10 outlets for
charging the XOs. The number 10 seemed to be reasonable to be drawn
from a 400 W SMPS.

Anyways so the steps for the construction went as follows:

Draw the 12 V supply from the SMPS, that is, the yellow wire and the
ground, the black.

The first thing that we did was to cut the first main wire for about a
metre. This wire was of 25 guage, the gauge has to be high for the
main cable as it has to draw power for all the 10 XOs.

Now for connecting the main power cable to the SMPS, we needed the
female connectors and join this to the output of power supply. This is
the same thing which goes inside your IDE drives. But in this case we
wil be deriving the 12 V supply and not touching the 6 V
supply. Making this connection requires a bit of skill, as we
discovered later, the joints were shaky, even after all the crimping
that we did. They had to redone at Jude's office.

Now after the first metre of the main power cable, we attached 4 more
wires, 2 black and 2 red. One each black and red wires were braided
and ended in the DC jack for the XOs. So at the first `T' joint we had
two outputs for the XOs. For the joint itself, we had 8 wires coming
there. So we soldered the wires. Jude suggested that we could get what
are known as `shorting caps' for making the final product.

Now this step was repeated for the remaining 4 `T's. So at the end
voila we had a mass charger for the OLPC.

5 The Short

So we tested our creation with 10 XOs, being charged simultaneously by
the charger. But there was a problem, the joints started to heat
up. There was a short some where in the circuit. We did not test for
continuity. So we had to redo the entire thing again. :(

The short was finally found in one of the DC jacks, which when twisted
and pressed, had a protrusion which actually punctured the other wire
and thus shorted the entire circuit. Finally after almost re-doing the
entire circuit, we were on our way to test our charger.

With all the XOs attached. The light on the battery indicator of the
XOs was red and amber. Then slowly after almost an hour, slowly one by
one, the XOs were being charged, indicated by the indicator becoming
green. :)

Tuesday, August 10, 2010

Laboratory of The Mind

 Having gone through the book Robert Browns Laboratory of Mind - Thought Experiments in Natural
Sciences, I have taken the following notes. Though the book starts with examples from a varied disciplines it culminates trying to interpret the EPR paradox in a way. Though an interesting book to read for a philosopher of science. I would have liked to see some detailed discussions on some of the thought experiments, the book could have been more aptly titled  Thought Experiments in [Quantum]  Sciences, though there is an entire chapter on Einstein, who is the master of such thought experiments, equaled only by Galileo.


  As I was sitting in my chair
  I knew the bottom wasn’t there,
  Nor legs nor back, but I just sat,
  Ignoring little things like that.

  Logic alone cannot give us great wealth of mathematical results.

   since abstract objects if they did exist would be unknowable.

    just as no experiment in physics is really crucial, so no argument
    in philosophy is really conclusive. 73

    In reality the very opposite happens. It is the theory which
    decides what we can observe…’ 106

    the crucial difference between Einstein and those who make the
    correspondence with experimental fact the chief deciding factor
    for or against a theory: even though the ‘experimental facts’ at
    that time very clearly seemed to favor the theory of his opponents
    rather than his own, he finds the ad hoc character of their
    theories more significant and objectionable than an apparent
    disagreement between his theory and their ‘facts’. 120

    As Heisenberg put it, This probability function represents a
    mixture of two things, partly a fact and partly our knowledge of a
    fact’ (1958, 45). 128

    What is even meant by ‘an interpretation of the QM formalism’ is
    somewhat vague. Logicians have a precise notion of
    ‘interpretation’ or ‘model of a formal system’, but that won’t do
    here. To start with, the formalism is already partially
    interpreted; it is hooked to observational input and output in a
    clear and unambiguous way.  This partial interpretation is called
    the minimal statistical interpretation. What it can do is handle
    everything observable. It is often favoured by those who advocate
    an instrumentalist outlook for scientific theories in general. But
    our interest is with how the world really works, not just with
    making successful observable predictions. Only those lacking a
    soul are content with the minimal statistical interpretation. 131

    In many (perhaps all) scientific theories, there are elements
    which are taken as just brute facts. For instance, in Newton’s
    physics, inertia is an unexplained explainer; it accounts for
    other phenomena, but is itself unaccounted for. Are EPR
    correlations like that? 146

* Questions
1. When we see one swan to be white we do not conclude immediately
   that all swans are white. But on the other hand we conclude that
   all gold atoms have the same atomic number 79. Why is there an
   asymmetry between the two modes of thought?

2. Why does 3>2 seems intuitively pretty obvious, whereas `proton is heavier than
   electron' does not?

3. Quine says, our conviction that 2+2=4 does not stem from laboratory
   observations, no matter how carefully performed or often
   repeated. Comment.

4. How would things be different if there were no abstract objects but
   everything else, including our ‘intuitions’, remained the same?

5. Is Newton's first law only vacuously true? Let me elaborate on
   this. The first law as known states the following:

   /A body will continue its state motion or rest, unless it is acted
   upon by a force./
   Now how do we do this experiment in real? Can we have /any/ test
   body which is far away from any other body, so that there are /no/
   forces acting on the test body? If not, then how can we be assured
   about the validity of the first law?

6. Though we often now make fun of theories like phlogiston, caloric
   or aether, they were actually successful to some degree in their
   day and were believed by reasonable people. (Maxwell once said that
   the aether theory was the best confirmed in all science.) The
   physical world somehow or other contributed to the production of
   these rational, but false, beliefs. How is it that a (physical)
   world that contains no phlogiston, caloric, or aether can somehow
   be responsible for bringing about the phlogiston, caloric, and
   aether theories?

Friday, August 6, 2010

Seeing Red

Recently I came across a book called Seeing Red by H. Arp.
The book questions the fundamental ideas in the Big Bang Cosmology.
The basic idea that is questioned is that the Distance-redshift relation; that
is the more redshift and object has more distant it is from us. This idea forms
the bedrock on which the Big Bang Theory rests. So questioning this idea is out
of question for the Big Bang theorists. But even when an observation occurs which
does not confirm these ideas, it is so to speak, swept under the carpet, literally. When
the data confirms the beliefs that they hold; namely the theory; then the instrument is
working fine, when it does not, it is noise; the instrument is faulty.

Also it points out in the red tapism in the scientific community, where one follows
the leader or gets isolated, as  is the case with Arp. The opaqueness in the `peer review'
process is higlighted by numerous examples which arp cites in his interactions with
editors and referees for the prestigious journals in Astronomy. The very value of democratic
process in science is under question, so are the naive ideas of Popper who thought that scientists
always try to falsify their own theories. Here it seems it is the opposite case, with scientists
trying to suppress the observations which contradict with their own pet theories, by all
possible means, most of them un-ethical for a scientist, at least in theory. Along with the
journals, the conferences are also exposed, in which only the already set theories are entertained
with no data which questions the popular theories are allowed to be shown, which is the very
spirit of science. When every thing else fails the integrity of the person is under question.

The last chapter is a must read for all students of science.
Here are some of the quotes from the text:

 Quotes from Seeing Red

  “No matter how conclusive the evidence, we have the power to
   minimize and suppress it.”

   Scientists, particularly at the most prestigious institutions, regularly suppress and ridicule findings
   which contradict their current theories and assumptions.
   The average astronomer, however, would look at them and start to
   argue that they must be accidental, because astronomers now feel
   compelled to fit the observations to the theory and not vice versa.
   But no matter how intimidatingly complex the calculation, no
   matter how small the probability of accident may be, the
   calculation does not tell you whether the result is true or not. In
   fact, no matter how significant the number is, scientists won’t
   believe if they don’t want to.
   A reasonable response would be to notice such a case and say,
   “If I see a few more cases like this I will have to believe it is
   real.” Most astronomers say, “This violates proven physics
   [i.e. their assumptions] and therefore must be invalid. After all,
   no matter how improbable, it is only one case.”

  The paper was also testimony to the fact that sensible analysis
  of observations was being blocked and ignored, while the high
  profile journals were submerged with a flood of elaborations of
  incorrect assumptions which prevented anyone from remembering
  anything important for more than a few years.


  The establishment always confuses data with theories.

  Clearly, the main purpose of these “review of the theory talks” was
  to fix firmly in everyone’s mind what the party line was so that all
  observations could be interpreted properly.


  Shortly thereafter, the Space Telescope Science Institute
  announced it was suspending the amateur program because it was “too
  great a strain on its expert personnel.”

  Professionals start out with a theory and only see those details
  which can be interpreted in terms of that theory.

  The reason the point is so sensitive is that the influential people
  in the field know what the observations portend, but they are too
  deeply committed to go back. The result will surely be to inexorably
  push academic science toward a position akin to that of the medieval
  church. But if that is the evolutionarily necessary solution, then
  perhaps we should hasten the process of replacing the present system
  with a more effective mode of doing science.


  “Well I know you can’t be right, but I will help you where I can.”


  Martin Elvis from the Cambridge Center for Astrophysics (CFA)
  jumped up and said, “That’s noise.” I argued that you could see that
  it was not noise.


  One thing has been accomplished, though. I now understand what
  should be called the statistics of nihilism. It can be reduced to a
  very simple axiom: “No matter how many times something new has been
  observed, it cannot be believed until it has been observed again.” I
  have also reduced my attitude toward this form of statistics to an
  axiom: “No matter how bad a thing you say about it, it is not bad


  “If you are wrong it doesn’t make any difference, if you are right it
  is enormously important.”


  I feel very strongly about what happened and I want to make my
  position clear: Astrophysical Journal Letters is the normal journal
  for publishing new observations from the Hubble Space Telescope. The
  telescope cost billions of dollars of public funds. The vast
  majority of page charges which pay for the publication of the
  journal come from government supported contracts. The overriding,
  first directive of the editor is to communicate important new
  astronomical results. If the editorial process violates its primary
  responsibility, it misuses public funds.


  But the fatal flaw, it seems to me, is that people who are
  interested in power are spurred by emotions which interfere with
  their reason.